
Ubuntu
How To Use Certbot Standalone Mode to Retrieve Let's Encrypt SSL Certificates on Ubuntu
20.04
How to unzip files on ubuntu

How To Use Certbot
Standalone Mode to Retrieve
Let's Encrypt SSL
Certificates on Ubuntu 20.04
Step 1 — Installing Certbot
Certbot recommends using their snap package for installation. Snap packages work on nearly all
Linux distributions, but they require that you’ve installed snapd first in order to manage snap
packages. Ubuntu 20.04 comes with support for snaps out of the box, so you can start by making
sure your snapd core is up to date:

If you’re working on a server that previously had an older version of certbot installed, you should
remove it before going any further:

After that, you can install the certbot package:

Finally, you can link the certbot command from the snap install directory to your path, so you’ll be
able to run it by just typing certbot . This isn’t necessary with all packages, but snaps tend to be
less intrusive by default, so they don’t conflict with any other system packages by accident:

sudo snap install core; sudo snap refresh core

sudo apt remove certbot

sudo snap install --classic certbot

sudo ln -s /snap/bin/certbot /usr/bin/certbot

Now that we have Certbot installed, let’s run it to get our certificate.

Step 2 — Running Certbot
Certbot needs to answer a cryptographic challenge issued by the Let’s Encrypt API in order to
prove we control our domain. It uses ports 80 (HTTP) or 443 (HTTPS) to accomplish this. Open up
the appropriate port(s) in your firewall:

Output:

We can now run Certbot to get our certificate. We’ll use the --standalone option to tell Certbot to
handle the challenge using its own built-in web server. Finally, the -d flag is used to specify the
domain you’re requesting a certificate for. You can add multiple -d options to cover multiple
domains in one certificate.

When running the command, you will be prompted to enter an email address and agree to the
terms of service. After doing so, you should see a message telling you the process was successful
and where your certificates are stored:

Output:

sudo ufw allow 443

Rule added
Rule added (v6)

sudo certbot certonly --standalone -d your_domain

IMPORTANT NOTES:
Successfully received certificate.
Certificate is saved at: /etc/letsencrypt/live/your_domain/fullchain.pem
Key is saved at: /etc/letsencrypt/live/your_domain/privkey.pem
This certificate expires on 2022-02-10.
These files will be updated when the certificate renews.
Certbot has set up a scheduled task to automatically renew this certificate in the background.

- -
If you like Certbot, please consider supporting our work by:
* Donating to ISRG / Let's Encrypt: https://letsencrypt.org/donate
* Donating to EFF: https://eff.org/donate-le

You should now have your certificates. In the next step, we will inspect some of the files that we
downloaded and learn about their functionality.

Step 3 — Configuring Your
Application
Configuring your application for SSL is beyond the scope of this article, as each application has
different requirements and configuration options, but let’s take a look at what Certbot has
downloaded for us. Use ls to list out the directory that holds our keys and certificates:

Output:

The README file in this directory has more information about each of these files. Most often you’ll
only need two of these files:

privkey.pem : This is the private key for the certificate. This needs to be kept safe and
secret, which is why most of the /etc/letsencrypt directory has very restrictive permissions
and is accessible by only the root user. Most software configuration will refer to this as
something similar to ssl-certificate-key or ssl-certificate-key-file .
fullchain.pem : This is our certificate, bundled with all intermediate certificates. Most
software will use this file for the actual certificate, and will refer to it in their configuration
with a name like ‘ssl-certificate’.

For more information on the other files present, refer to the “[Where are my certificateshttps://eff-
certbot.readthedocs.io/en/stable/using.html#where-are-my-certificates)” section of the Certbot
docs.

Some software will need its certificates in other formats, in other locations, or with other user
permissions. It is best to leave everything in the letsencrypt directory, and not change any
permissions in there (permissions will just be overwritten upon renewal anyway), but sometimes
that’s just not an option. In that case, you’ll need to write a script to move files and change
permissions as needed. This script will need to be run whenever Certbot renews the certificates,
which we’ll talk about next.

sudo ls /etc/letsencrypt/live/your_domain

cert.pem chain.pem fullchain.pem privkey.pem README

Step 4 — Handling Certbot
Automatic Renewals
Let’s Encrypt’s certificates are only valid for ninety days. This is to encourage users to automate
their certificate renewal process. The certbot package we installed takes care of this for us by
adding a renew script to /etc/cron.d . This script runs twice a day and will renew any certificate
that’s within thirty days of expiration.

With our certificates renewing automatically, we still need a way to run other tasks after a renewal.
We need to at least restart or reload our server to pick up the new certificates, and as mentioned in
Step 3 we may need to manipulate the certificate files in some way to make them work with the
software we’re using. This is the purpose of Certbot’s renew_hook option.

To add a renew_hook , we update Certbot’s renewal config file. Certbot remembers all the details of
how you first fetched the certificate, and will run with the same options upon renewal. We just need
to add in our hook. Open the config file with you favorite editor:

A text file will open with some configuration options. You can add a hook on the last line that will
reload any web-facing services, making them use the renewed certificate:

Update the command above to whatever you need to run to reload your server or run your custom
file munging script. Usually, on Ubuntu, you’ll mostly be using systemctl to reload a service. Save
and close the file, then run a Certbot dry run to make sure the syntax is ok:

If you see no errors, you’re all set. Certbot is set to renew when necessary and run any commands
needed to get your service using the new files.

Conclusion

sudo nano /etc/letsencrypt/renewal/your_domain.conf

renew_hook = systemctl reload your_service

sudo certbot renew --dry-run

/etc/letsencrypt/renewal/<^>your_domain<^>.conf

In this tutorial, we’ve installed the Certbot Let’s Encrypt client, downloaded an SSL certificate using
standalone mode, and enabled automatic renewals with renew hooks. This should give you a good
start on using Let’s Encrypt certificates with services other than your typical web server.

How to unzip files on ubuntu
Install unzip for handling .zip files

Command to unzip a .zip file

Install p7zip-full for handling .7z files

Command to extract a .7z file

Install p7zip-rar for handling .rar files

Command to extract a .rar file using 7z

sudo apt-get update

sudo apt-get install -y unzip

unzip filename.zip

sudo apt-get update

sudo apt-get install -y p7zip-full

7z x filename.7z

sudo apt-get update

sudo apt-get install -y p7zip-rar

Install unrar for handling .rar files

Command to extract a .rar file using
unrar

Install gzip for handling .gz files

Command to extract a .gz file

Install bzip2 for handling .bz2 files

Command to extract a .bz2 file

7z x filename.rar

sudo apt-get update

sudo apt-get install -y unrar

unrar x filename.rar

sudo apt-get update

sudo apt-get install -y gzip

gunzip filename.gz

sudo apt-get update

sudo apt-get install -y bzip2

Install xz-utils for handling .xz files

Command to extract a .xz file

Install lzma for handling .lzma files

Command to extract a .lzma file

Install tar for handling .tar files (useful
for extracting .tar.gz and .tar.bz2 files)

Command to extract a .tar file

bunzip2 filename.bz2

sudo apt-get update

sudo apt-get install -y xz-utils

unxz filename.xz

sudo apt-get update

sudo apt-get install -y lzma

unlzma filename.lzma

sudo apt-get update

sudo apt-get install -y tar

Command to extract a .tar.gz file

Command to extract a .tar.bz2 file

Command to extract a .tar.xz file

tar -xvf filename.tar

tar -xvzf filename.tar.gz

tar -xvjf filename.tar.bz2

tar -xvJf filename.tar.xz

